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ABSTRACT 
 
Implementing computational boundary conditions such as perfectly matched layers (PML) does have advantages for 
forwarding modeling of the Earth’s crust. The mathematical modeling of many physical problems encountered in 
industrial applications often leads to a set of linear partial differential equations, PDEs. It considerably improves the 
visualization of seismic events relevant to oil and gas exploration. In this work, we present an efficient numerical scheme 
for hyperbolic PDEs, where a computational technique takes care of reflections at the borders domain using a linear two-
dimensional (2-D) elastic-wave system of decoupled equations with PML-type boundary conditions. The key idea is to 
introduce a layer that absorbs the reflections from the borders improving images’ visualization. Anisotropy has been 
reported to occur in the Earth’s three main layers: the crust, mantle, and core. However, this implementation refers to the 
case of a vertical transversal anisotropic medium (VTI) in the crust-layer. Images and screen-shots of the longitudinal (P) 
impulse-response and the transverse (SV) impulse-response are obtained at deferent times. This computational method 
enables us to achieve images for the P and SV response-impulses, and to obtain high quality synthetic seismograms for 
the PP and PS reflection events in a 2-D VTI two-layer model. 
 
PACS numbers:07.05.Tp; 94.20.Bb; 91.30.Cd; 91.30.Ab 
Keywords: Seismic anisotropy, VTI medium, computational modeling, perfectly matched layer.  
 

 
INTRODUCTION  
 
The wave equation plays an important role in seismic oil 
and gas exploration since it allows modeling the earth 
structure. In the past decades, seismic anisotropy has been 
gaining attention from academic and industry, in part 
thanks to advances in anisotropy parameter estimation 
(Perez et al., 1999; Grechka and Tsvankin, 1998).  
 
A material is said to be anisotropic if the value of one or 
more of its properties varies with direction, consequently 
anisotropy consideration improves the subsurface 
imaging. Seismic Anisotropy can be defined as the 
dependence of seismic velocity on a direction or upon an 
angle. Anisotropy is described by a 4th order elasticity 
tensor with 21 independent components for the lowest-
symmetry case (Musgrave, 1970; Helbig, 1994; Landau 
and Lifshitz, 1982; Dellinger, 1991). In practice however, 
observational studies are unable to distinguish all 21 
elements and anisotropy considerations are usually 
simplified. For seismic exploration, the most complicated 
case occurs in fractured monoclinic media, with 9 elastic 
constants (Grechka et al., 2000). In general, two or more 
sets of vertical non-corrugated and not perpendicular 
fractures produce an effective monoclinic medium with a 
horizontal symmetry plane. The second most important 

application occurs for the orthorhombic model. The 
orthorhombic model describes a layered medium fracture 
in two orthogonal directions (Tsvankin, 1996; Contreras 
et al., 1998). However, in the simplest form (seismic 
exploration uses it) there are two main kinds of transverse 
anisotropy, i.e. the transverse isotropy (TI). One is called 
the horizontal transverse isotropy (HTI), which is a 
common model in shear-wave studies of fractured 
reservoirs that describes a system of parallel vertical 
penny-shaped cracks embedded in an isotropic host rock 
(Contreras et al., 1999). Henceforth this kind of 
anisotropy is associated with cracks and fractures. The 
other one is called vertical transversal anisotropy (here 
VTI means the vertical transversal isotropy) (Thomsen, 
1986) and it is associated with layering and shales. 
Sometimes people call it the vertical polar anisotropy.  
 
In the beginning, forward modeling was done by 
simulating the scalar P-wave field obtained from the 
acoustic wave equation. However, the earth-crust is 
elastic and anisotropic (Helbig, 1994; Grechka et al., 
2000; Contreras et al., 1998) and all propagation modes 
should be considered in order to observe anisotropy 
effects. Forward modeling and parameter estimation are 
almost the most fundamental to all other anisotropy 
applications in oil exploration (Grechka and Tsvankin, 
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1998). In part, this can be done by numerically solving the 
hyperbolic elastic wave equation (WE). The vector and 
tensor fields representing the WE improve the information 
about the three-dimensional (3D) earth-crust geology. 
This translates into a better subsurface imaging and it is of 
extreme importance for the oil and gas seismic 
exploration. 
 
The most common type of anisotropy that occurs in the 
Earth’s crust is the VTI that is observed in sedimentary 
rocks (Winterstein, 1990). To achieve the 3D seismic 
modeling with the VTI requires the knowledge of five 
elastic constants. However, in two dimensions only four 
constants are involved, namely C11, C33, C13, and C44. In 
this work, we use the Voigt notation for the elastic 
constants (Thomsen, 1986; Faria and Stoffa, 1994). 
Henceforth shear wave splitting is not considered in a 
two-dimensional (2-D) modeling because of the lack of 
the elastic constant C66. Abundant geological evidence of 
shales shows the importance of VTI models in seismic 
reservoir characterization (Perez et al., 1999; Grechka and 
Tsvankin, 1998).  
 
In this work, we implement an algorithm using a linear 
finite difference decoupled PDEs in terms of the velocities 
and stress tensor components. To implement such a 
model, we use central-difference second order 
approximation for space variables and time partial 
derivatives. Henceforth we use the finite-difference time-
domain (FDTD) method (Yee, 1966). In addition, we use 
staggered stencils for computational storage (Virieux, 
1986). Staggered cells grant the calculation of different 
physical quantities at different mesh-grid points (see 
Figure 2 in section called COMPUTATIONAL 
SPACETIME IMPLEMENTATION) reducing the 
computational cost storage. Additionally, with this 
algorithm we can introduce different source-receiver 
configurations, making it ideal for simulation in oil and 
gas seismic modeling. 
 
To implement a FDTD solution of the WE, a 
computational frame must first be established. The 
computational domain is the physical region over which 
the simulation is performed. To achieve the condition of 
non-reflective borders, we use the artificial technique of 
perfectly coupled layers PML (Festa and Nielsen, 2003; 
Komatitsch and Martin, 2007). Consequently, the effect 
due to the reflection of the waves at the borders of the 
domain is automatically reduced. 
 
The PML implementation in seismic exploration requires 
a reformulation of the linear WE to eliminate the 
unwanted reflections. Thus, this work is structured in the 
following way. The following section introduces the topic 
of seismic anisotropy and its relevant application in R&D 
Oil industry. After that, the next section briefly describes 

the PDEs for a 2-D medium with VTI shale anisotropy, 
and the theoretical implementation of the PML obtaining 
a decoupled EWs (elastic equation system) including the 
new border computational conditions. Next, the additional 
section describes the numerical implementation that will 
allow CPU time reduction. Subsequently, we find the 
correct decoupled finite-difference scheme in terms of the 
staggered-stencil mesh taking into consideration the PML 
(see Fig. 2). In the final section for discussion, the 
outcome shows the applicability of this technique. We 
were able to achieve very neat and sharp subsurface 
images without reflection events at the edges of the 2-D 
earth-crust two dip layer shale model. 
 
THE 2-D LINEAR VTI MEDIA 
 
As we stated before, the formulation of a linear WEs in 
terms of temporal derivatives of the velocity and the 
stress fields can be used to propagate waves. The FDTD 
technique reproduces the fields forward in time-domain. 
This is called forward modeling. This procedure is 
designed through a 3D staggered finite-difference grid 
(Faria and Stoffa, 1994). This formulation is widely used 
in the literature for seismology purposes (Virieux, 1986). 
In 2-D VTI anisotropy, it involves the transformation of 
five coupled first-order PDEs, namely the two general 
equations of motion for the vector velocity (vx, vz) field 
that are:  
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where ρ is a constant mass density, fx and fz are external 
forces driven by the source. Since we use the FDTD time-
domain technique, a seismic pulse is used as the source, 
then the response of the system over a wide range of 
frequencies can be obtained with a single simulation.  
 
And there are the following three equations, where only 
four elastic constants are used as the input variables for 
the WEs: 
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In three equations written above, the following stress σij 
second order tensor field are defined by:  
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It is noted that the longitudinal (P, i.e. prolongate) and the 
transverse (SV, i.e. shear-vertical) modes given by the 
five PDEs written above are coupled (Faria and Stoffa, 
1994).  
 
The2-D decoupled VTI system with PML 
 
Here we explain ad apply PML technique to the 2-D VTI 
modeling. In order to make the finite difference method 
more stable and convergent, we follow the arguments 
presented previously (Festa and Nielsen, 2003; 
Komatitsch and Martin, 2007) for the stability and the 
dispersion conditions in a 2-D EWs. We should mention 
that a 3D anisotropy implementation has not been 
completely achieved with this technique due to failures in 
the stability and dispersion conditions when considering 
anisotropy (Faria and Stoffa, 1994). However there are 
some 3D improvements (Festa and Nielsen, 2003). Even 
in works dedicated to seismology, the use of this 
technique helps to improve 2-D imaging resolution at 
larger scales. The seismological domains have borders as 
it happens in seismic exploration.  
 
The PML mathematical implementation consist in the 
introduction of a modified coordinate system, where the 
expansion coefficient is a complex number with an 
evanescent imaginary part. This generalization is 
achieved through the following substitution:  
 

డ
డ௫
→
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 and డ
డ௭
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where p(x) and p(z) are the coefficients of the PML. They 
are given by the following expressions (Komatitsch and 
Martin, 2007): p(x) = p0 (x/L)N and p(z) = p0 (z/L)N with p0 
= − 3vp log(Rc)/(2L), where L is the thickness of the 
perfectly coupled layer, N the size of the problem, and p0 
has an approximate value of 341.9.  
 
When the above coordinate system is replaced in the 
equations for the VTI medium of the previous section, the 
system becomes a new linear decoupled PDE-EWs. 
Because of the applied replacement there appear the 
following new equations for the new decoupled velocities 
  :௫ଶݒ ௫ଵ andݒ
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For the decoupled velocities ݒ௭ଵ and ݒ௭ଶ, the equations are: 
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These decoupled velocities (Komatitsch and Martin, 
2007) are related to the coupled ones by the relation 
௫ݒ = ௫ଵݒ + ௭ݒ ௫ଶ andݒ = ௭ଵݒ +  .௭ଶݒ

The stress tensor field is mathematically treated in the 
same way, obtaining a decoupled set of the new stress 
equations. The new decoupled stress (ߪ௫௫ଵ  and ߪ௫௫ଶ ) 
equations are: 
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Also, the new equations for the decoupled stress tensors 
components ߪ௭௭ଵ  and ߪ௭௭ଶ  are equal to: 
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The decoupled shear stress tensor components ߪ௫௭ଵ  and 
௫௭ଶߪ  follow the equations: 
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where now ߪ௫௫ = ௫௫ଵߪ + ௫௫ଶߪ ௭௭ߪ , = ௭௭ଵߪ + ௭௭ଶߪ , and 
௫௭ߪ = ௫௭ଵߪ + ௫௭ଶߪ . These five linear PDE equations will be 
used for a forward modeling in the following section.  
 
THE COMPUTATIONAL SPACETIME 
IMPLEMENTATION 
 
The computational model that we propose in this 
simulation is divided into a mesh of Nx × Nz points. The 
finite-difference scheme shown in Figure 1 demonstrates 
the computational edge domain where the PML are 
applied according to the two-layer dip model. Δx and Δz 
are defined as the distances between the points in such a 
way that x = nxΔx and z = nzΔz with nx = 1...Nx and nz = 
1...Nz. For the timestep Δt, we have t = nΔt, where n the 
timestep shown in Figure 2, and the stencil time is not 
showed (Faria and Stoffa, 1994). 
 

 
Fig. 1. The finite-difference simplified scheme showing 
the computational two-layer dip model. The vertical, 
horizontal, and crossed lines near the borders show the 
spots where the PLM are applied.  
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The five variables ݒ௫ଵ, ݒ௭ଵ, ߪ௫௫ଵ ௭௭ଵߪ , , and ߪ௫௭ଵ  are discretized 
into a 2-D staggered grid mesh, see in Figure 2 for a 
better explanation, where the velocity components are 
stored in both stencils, the normal components of the 
stress tensors are stored in one of the stencils, while the 
shear stress components are located at another stencil. 
However, the major difference of a staggered-grid scheme 
is that the velocity and stress components are not known 
at the same grid point, as it can be seen in Figure 2. 
Henceforth we use a previous scheme proposal with little 
modifications (Faria and Stoffa, 1994), where different 
stencils are used for normal and shear stress field 
computations. 
 
Following scheme shown in Figure 2, domain vx is 
calculated at the points (i ± 1/2, k) in the space, vz is 
calculated at the points (i, k ± 1/2), the normal stress 
tensor components σxx and σzz are calculated at the points 
(i, k) and finally the shear stress σxz is calculated at the 
points (i ± 1/2, k ± 1/2). The density ρ(x, y, z) is 
considered a constant density ρ0, see the last line of table 
1 for its correspondent values and units. Physically it 
means that the VTI model is homogeneous and that does 
not take into consideration earth-crust heterogeneities.  
 

 
Fig. 2. The staggered finite-difference grid for the velocity 
and stress updates; both stencils show the grids points, 
where different fields components are calculated. The 
velocity components are calculated in both stencils (black 
circles), the shear stress components are calculated in the 
blue stencil (red stars), and the cinnamon stencil is used to 
calculate the normal stress components (green squares). 
 
An explosive source is simulated using the amplitude of a 
Ricker wavelet with a peak frequency f0∼ 30 Hertz. 
Amplitudes are added to the velocities ݒ௫ଵ and ݒ௭ଵ at each 
n timestep. The stability limit of the discrete system is 
given by the following condition:  
 

ݐ߂ < /ݔ߂0.606 ௣ܸ 
 
where Vp stands for the horizontal longitudinal speed 
(Faria and Stoffa, 1994).  
 
The dispersion condition for the discrete system is given 
by the inequality:  
 
ݔ߂ < ௦ܸ/(10 ଴݂) 

 
where Vs is the transverse wave speed.  
 
However, some authors (Becache et al., 2003) showed 
that the stability of the classical PML model depends 
upon the physical properties of the anisotropic medium 
and that it can be intrinsically unstable. However, the 
elastic constants listed in the table were previously proven 
(Faria and Stoffa, 1994) to meet the Becache stability 
criteria. This algorithm could be extended to 3D situations 
by further studying the stability and dispersion conditions.  
 
Henceforward we proceed to obtain the discretization of 
the velocity fields as follows. For the decoupled finite-
difference system, the ݒ௫ଵ and ݒ௫ଶ components are 
computed at time-step points tn+1 and tn(the stencil-time is 
not shown in (Faria and Stoffa, 1994)) with the following 
finite-difference equations: 
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The ݒ௭ଵ and ݒ௭ଶ components are calculated at the time-step 
points tn+1 and tn with the help of the following equations:  
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For the stress fields, the discretization is as follows. First, 
the decoupled equations for the normal stress tensor 
components ߪ௫௫ଵ  and ߪ௫௫ଶ  are computed at the mesh step-
time points tn±1/2 using the equations: 
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Second, the decoupled equation for the normal stress 
components ߪ௭௭ଵ  and ߪ௭௭ଶ  are computed at the time points 
tn±1/2 by means of the following expressions:  
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Third, the decoupled equations for the shear components 
௫௭ଵߪ  and ߪ௫௭ଶ  are computed at time points tn±1/2 by means 
of: 
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The elastic constants used for the two-layer model are 
given according to the table. These values correspond to 
different types of VTI media and they are able to 
accomplish the stability condition using a PML computer 
domain (Faria and Stoffa, 1994; Komatitsch and Martin, 
2007; Becache et al., 2003).  
 
Table 1. The VTI elastic constants for the model shown in 
Figure 4a (Komatitsch and Martin, 2007).  
 

Elastic constants, 
1010 [N/m2] 

upper layer bottom layer 

C11 16.5 16.7 
C13 5.0 6.6 
C33 6.2 14.0 
C44 3.4 6.63 

ρ0 [kg/m3] 7,100 3,200 
 
 

DISCUSSION 
The present paper describes a new spacetime 2-D 
methodology with timestep and spacestep control to solve 
2-D VTI linear decoupled EWs with PML conditions 
using staggered-grids shown in Figures 1 and 2. 
Henceforth, we develop a computational model for an 
elastic wave propagation simulation for 2-D VTI 
anisotropic media, by combining a FDTD method on 
staggered grids with a PML boundary condition. For that, 
a High-Performance Linux application in C (over 1,000 
lines of code) using Make, GDB and Valgrinds 
memcheck, to generate and visualize 2-D response-
impulses and synthetic seismograms were developed.  
 
We establish that visualization of the impulse response of 
the P and SV modes can be improved by the PML. As a 
consequence, unwanted reflections from the borders 
shown in Figure 3 are totally eliminated according to 
Virieux (1986).  
 

 
Fig. 3. The screenshots at 0.2 (the upper), 0.3, and 0.5 
second are displayed for the vertical velocity wave-field 
component propagating through a homogeneous medium 
with elastic constants from the upper layer listed in the 
Table 1. The triplication of the SV wave around the 
intermediate angles are observed to be asymmetrical for 
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the SV impulse-response. The absorbing effect of the 
PML at the edges of the computational domain is notable.  
 
 

In Figure 3, the simulations were performed with an 
explosive source (Ricket-wavelength) centered in the 
middle of the model to eliminate reflections from the 
edges. In Figure 3, time screenshots for t = 0.2, 0.3, and 
0.5 second are also presented. From those snapshots, we 
conclude that the PML boundary conditions absorb the 
reflections from the border, implying an exceptional 
numerical performance of the computational PML 
technique. Another conclusion is that the P 2-D response-
impulse behave as a simpler quasi-elliptical way shown in 

Figure 3, while the SV response-impulse presents 
triplications. Moreover, the effects of the VTI elastic 
constants on SV response-impulses affects the direction of 
propagation. We observe from the snapshots in Figure 3 

how the value of the elastic constant C13 affects the 
direction of the SV. Triplications in the SV wavefront are 
modeled. However, one question is not solved yet in this 
work: the asymmetric behavior of the SV impulse-
response in Figure 3 with respect to the vertical axis.  
 
Subsequently, the explosive source is relocated to the 
upper central part of the 2-D model sketched in Figure 4a. 
On the surface, fifty receivers are uniformly distributed on 
both sides of the source. We see how the velocity fields 

 
Fig. 4. (a) The two-layers VTI dip model; (b) the synthetic seismograms for the vertical Vz; and (c) the synthetic 
seismograms for the horizontal Vx. Both the PP and PSV reflection events due to the dip layer are presented in 
screenshots (b) and (c). 
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cancel out at the edges of the model in Figure 4a. Then 
we obtain the synthetic seismograms for the two layers 
model, each of them has different elastic constants values. 
The synthetic seismograms of the vertical component Vz 
(Fig. 4b) and the horizontal component Vx (Fig. 4c) are 
shown with the primary reflections events due to the dip 
layer. In addition, Figure 5 shows the elastic P response-
impulse propagating from the middle of the top through 
the model shown in Figure 4a.  
 

 
 
Fig. 5. The elastic P response-impulse propagating from 
the middle of the top through the model shown in Figure 
4a.  
 
CONCLUSION  
This short report remarkably showed the effectiveness of 
the PML using the decoupled linear system of equations 
(1)-(10) for the 2-D VTI media simulation in Oil and Gas 
R&D.  
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